Softmatter.pl

Research

2020–2022 Electric-field-induced deformation and crumpling of non-spherical particle shells formed on droplets.

Funder: Polish National Science Centre (Preludium17, 2019/35/N/ST5/02821), PLN 120 720
Role: Mentor and Coordinator

Within the project, we studied patchy particle capsules initially made on a surface of liquid droplets. The investigation concerned the mechanical properties; specific direction and targeted release of encapsulated species; and the motility of such heterogeneous colloidal capsules (patchy colloidosomes). The main objectives of the project were: to further develop fabrication methods of patchy colloidosomes and hybrid patchy colloidal capsules on the bases of my recent pioneering work in this field; to understand the mechanism of complex deformation of patchy colloidal capsules; to develop routes for specific and targeted release of encapsulated species from patchy colloidosomes; and research on the guided-motion, self-propulsion and collective behaviour of patchy colloidosomes.


2016–2020 Mechanical properties, specific release and motility of patchy colloidosomes.

Funder: Polish National Science Centre (OPUS10, 2015/19/B/ST3/03055), PLN 1 162 000
Role: Principal Investigator

Within the project, we studied patchy particle capsules initially made on a surface of liquid droplets. The investigation concerned the mechanical properties; specific direction and targeted release of encapsulated species; and the motility of such heterogeneous colloidal capsules (patchy colloidosomes). The main objectives of the project were: to further develop fabrication methods of patchy colloidosomes and hybrid patchy colloidal capsules on the bases of my recent pioneering work in this field; to understand the mechanism of complex deformation of patchy colloidal capsules; to develop routes for specific and targeted release of encapsulated species from patchy colloidosomes; and research on the guided-motion, self-propulsion and collective behaviour of patchy colloidosomes.


2017–2019 Electric field driven propulsion and collective dynamics of homogeneous and patchy capsules.

Funder: European Commission (H2020-MSCA-IF-2016), EUR 134 462
Role: Principal Coordinator

Particle capsules, and especially patchy particle capsules are challenging to fabricate. To realize the potential applications of these capsules, it is also important to consistently produce capsules with tailored physical and mechanical properties. One of the objectives of this action was to combine microfluidic devices and electric fields for high-throughput fabrication of patchy capsules. Realizing this objective was also necessary to study the collective dynamics of multiple propelling capsules which was the last objective of this research project.


2016–2019 The development of an innovative process for the preparation of a new generation of TCF layers for use in displays and thin film photovoltaic cells.

Funder: Polish National Centre for Research and Development (Fast Track, POIR.01.01.01-00-1690/15), PLN 9 846 969
Role: Co-author and co-investigator

The main goal of this R&D project is to increase the level of technological readiness of previously developed methods for the production of ultra-thin conductive lines and two dimensional patterns on various types of substrates. We plan to achieve IX level of technological readiness by the end of the project. This R&D activity is a response to the rising market demand for new TCF layers. For many years ITO has been a standard and it was sufficient for the majority of applications. However, due to rising prices of indium and their volatility, limited resources controlled by one country, and also the development of flexible electronics, ITO is no longer adequate. These factors are overlapped by the expectations of the purchasers of home electronics, which are accustomed to the constant improvement of equipment performance without increasing the price, and continuous works over the performance of PV cells. In the last few years many facilities (scientific and industrial) have begun working over alternatives for the ITO layers. The project addresses these needs.


2015–2017 Mechanical properties and instability of Pickering films and emulsions.

Funder: Polish National Science Centre (FUGA, 2015/16/S/ST3/00470), PLN 286 000
Role: Principal Investigator

This is a research project in experimental soft matter physics focused on understanding the mechanics and rheology of monolayered colloidal capsules and instabilities of Pickering droplets probed by electrically induced stress. Within the project, we study colloidal capsules (composed of jammed particles) made on a surface of oil droplets. The investigation concerns the viscoelastic deformation, crumbling, rotation or tank-treading of a single capsule due to applied external E-fields. We also monitor changes of mechanical properties of droplets as the Pickering emulsion is being produced. This work is conducted in collaboration with group at NTNU, Trondheim.


2013–2015 A new approach to fabricating various colloidal shells and Pickering emulsions.

Funder: Foundation for Polish Science (HOMING PLUS, 2013-7/13), PLN 309 000
Role: Principal Investigator

This project focuses on new methods of fabrication of Colloidosomes/Janus/Patchy/Arrested shells. We also produce an active colloidal armour, i.e. a pupil-like shell that contracts and expands in presence of E-fields. We study silicone oil droplets, containing different particles (including clay, PE. PS or conductive beads), that are submerged in immiscible organic oil, and we observe particle movement, oil circulation and drop deformation when an electric field is applied. Results show how electric field strength, electrohydrodynamics, dielectric and conductive properties determine the fluid flow, particle organization and drop deformation. Adsorption and assembly of colloidal particles at the surface of liquid droplets is the basis for particle-stabilized Pickering emulsions and colloidosome capsules.